ICSAT 2013 Ingolstadt 25-27Sep13

ASSESSMENT OF THE VIABILITY OF VEGETABLE OIL BASED FUELS

Thomas I F¹, Porter N A², Lappas P²

- 1 I F Thomas & Associates, Melbourne. Australia
- 2 RMIT University, Melbourne Australia

This paper discusses :-

- Part 1 Why vegetable oil should be used ahead of all alternatives
- Part 2 Results of a literature survey, and
- Part 3 Findings of a 42,000 km on-road trial using principally, 50/50 blends of unheated waste cooking oil with conventional diesel fuel.

PART ONE – WHY VEGETABLE OIL ?

Current fuels are fossilised biofuels

The growing solid biomass comprises cellulose, lignin and hemicellulose

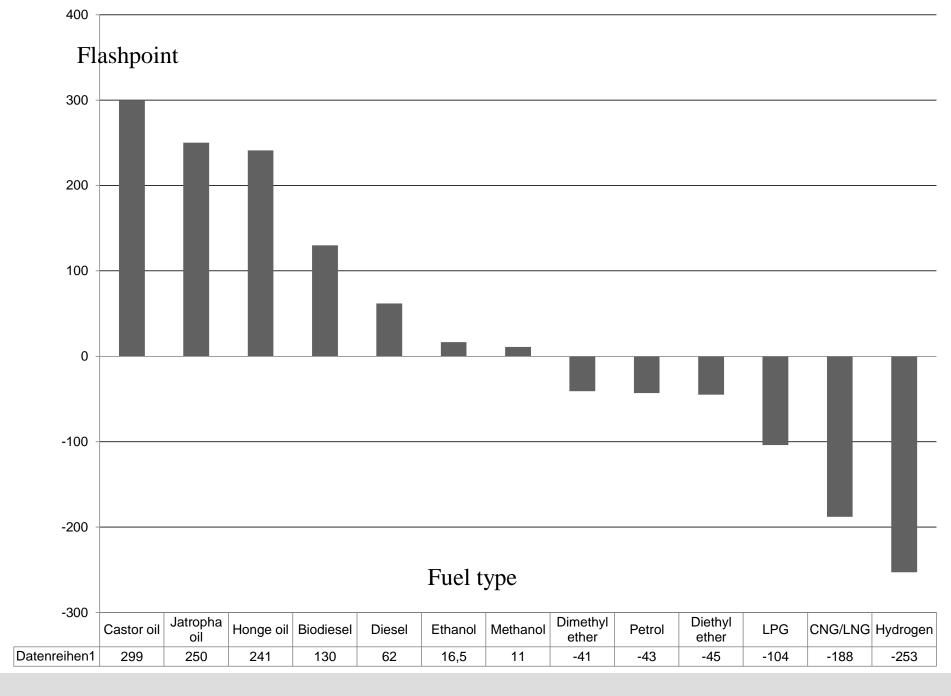
Biomass growing regions are land, sea and land-sea margins

Species in these regions are plants, algae and halophytes

Current fuel types are solids (coal), liquids (petrol, diesel) and liquefied gases (LPG, LNG)

The current dominant fuel type by far is liquids therefore replacing fossil fuels will be by liquid biofuels produced from the growing biomass eg by

- Very complex chemical processing of lignins and celluloses
- Complex production from algae or waste plastics
- Complex and dangerous transesterification of vegetable oils to make biodiesel
- Complex conversion of solids to liquids eg Coal or Gases To Liquids (CTL, GTL)
- Simple use of straight vegetable oils


I am proposing that vegetable oils should replace ALL fuels, because

- fires & explosions involving flammable liquids or gases would largely become a thing of the past
- we wouldn't need to drill
- we wouldn't need refineries
- we wouldn't need to have oil wars
- we wouldn't need nuclear power

But we would still need to stabilise (or reduce) our world population –

remembering that humans are a cancer on the planet (David Suzuki)

- Unmodified vegetable oils are inherently safer than all alternatives because of their high flashpoints
- They can be used as sustainable fuels without modification.
- There is no need to deplete edible oil stocks to achieve this because
- literature searching to date has found 123 non-food, oil-producing species,
- many of which are arid area growing 'weed' species.
- Further, vegetable oils are self-lubricating and quieter in use,
- they contain combined oxygen in carboxyl groups which assists late combustion,
- some contain additional combined oxygen in hydroxyl or epoxide groups.
- They contain no sulphur and they are less toxic than current fuels

The test vehicle engine is injected by mechanical fuel pumps and injectors at low pressure (500 bar)

Others have successfully tested vehicles with common-rail electronically injected engines using high injection pressures (2000 bar) [5] and [18]

We therefore need to encourage greater use of diesel engines and their further development to permit vegetable oil fuel to be used

Other sustainable fuels exist

OTHERS WITH SUCH HIGH INHERENT SAFETY DO NOT

for example,

If vegetable oil becomes the principal world fuel, lives saved in vapour cloud explosions alone would be 16.4 persons/year

Catastrophic accidents like Flixborough (UK 1974), Coode Island (1991), Longford (1998) and Buncefield (UK 2005),

WOULD BECOME A THING OF THE PAST

Almost no-one in the western world is working on this - certainly nowhere in Australia

Instead, current sustainability initiatives all use more dangerous fuels

With few exceptions, only developing countries are seriously considering vegetable oil use largely, because they have no choice

PART TWO - THE LITERATURE SEARCH

119 papers were assessed – all showed that regardless of oil type and concentration when blended with diesel fuel, vegetable oil is viable

Emission and noise results varied :-

- CO 6 up; 4 down
- CO₂ 1 up; 1 down; 1 same
- HC 5 up; 3 down
- PM 3 up; 1 down
- NOx 1 up; 8 down; 1 same
- Smoke 1 up; 5 down
- Noise 3 down see overleaf

Table 1								
Reference	СО	CO ₂	НС	PM	NOx	Smoke	Noise	Oil type etc
[1]	Up	Up	Up	-	Down	-	-	Jatropha
[4]	Up	-	-	-	Same	-	-	Karanja
[12]	Down	-	-	-	-	Down	-	WVO
[<u>13</u>]	Down	-	Down	-	-	Down	Down	Rapeseed
[18]	Up	-	Up	Up	Down	-	-	Canola
[20]	Up	-	Up	Up	-	-	-	Sunflower
[21]	-	-	-	-	Down	-	-	Rapeseed etc
[22]	Up	-	Up	Up	Down	-	-	traffic; Canola
[22]	Down	-	Down	Down	Down	-	-	country; ditto
[23]	-	-	-	-	-	Down	-	Rapeseed
[24]	-	-	-	-	Down	-	-	Saturated VOs
[25]	-	-	-	-	Down	-	Down	Cottonseed
26	-	-	-	-	-	Down	Down	Linseed etc
[27]	Up	Down	Up	-	Down	Up	-	Poon
[28]	Down	Same	Down	-	Up	Down	-	Jatropha

The overwhelming impression I have from reading all of these references, is summed up as follows :-

Vegetable oils and their products appear to be obvious choices as future fuels and are of exceptional importance [14]

Considering overall energy, health, environmental, and economic aspects, vegetable oils could be the fuel of the future [15]

PART THREE – THE ON-ROAD TRIAL

A 1996 turbo diesel utility vehicle was driven 42,000 km using the following fuels :-

100% used cooking oil	1000 km	1 trial
50/50 blend	9700 km	4 trials
50/50 blend + additives	23,800 km	19 trials
Diesel (control)	8000 km	7 trials

Additives used at 2L per 20L of 50/50 blend were :-

- isopropanol
- diethyl ether
- industrial perfume concentrates
- ethyl acetate
- methanol
- ethanol

Disadvantages I have found using vegetable oil are :-

fuel filter blockage

fuel injector pump blockage

exhaust smoke &

variation in idling speed

Others have experienced problems with

polymerisation high viscosity & acidity

I have NOT experienced these

All difficulties can be overcome by using filtered oil free of fish bones, burned chips, fine solids and suspended high-melting point oils and fats

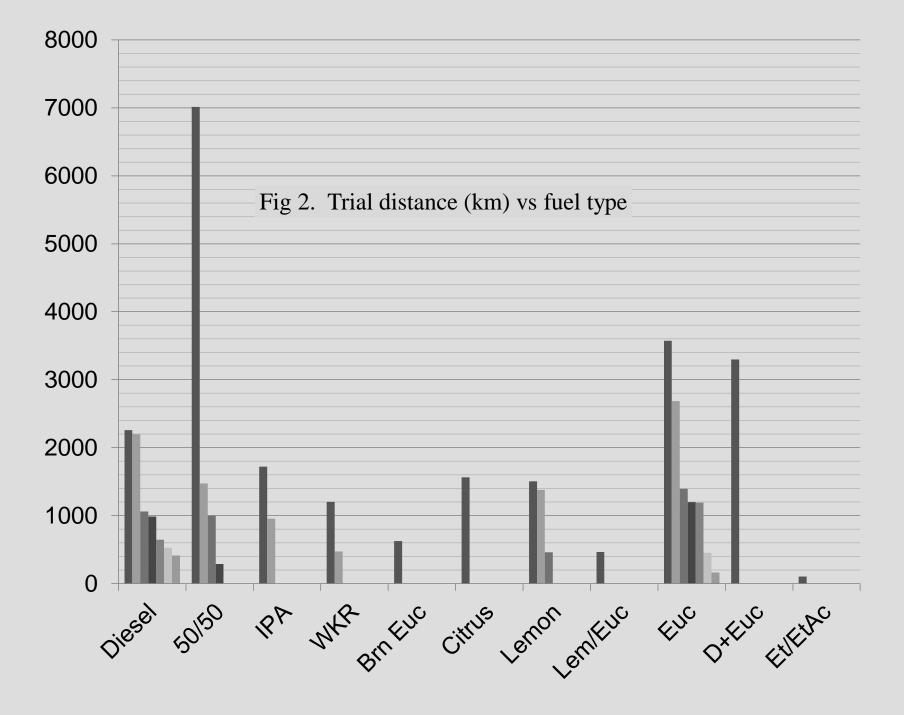
The most deleterious condition experienced required twice daily filter changes when the waste oil contained high melting point oils and fats

Preheating would overcome this, as would using oils which are liquid at ambient temperatures.

Using new (unused) vegetable oil would overcome all difficulties but this has not yet been attempted.

On-road trial uncontrolled variables were :-

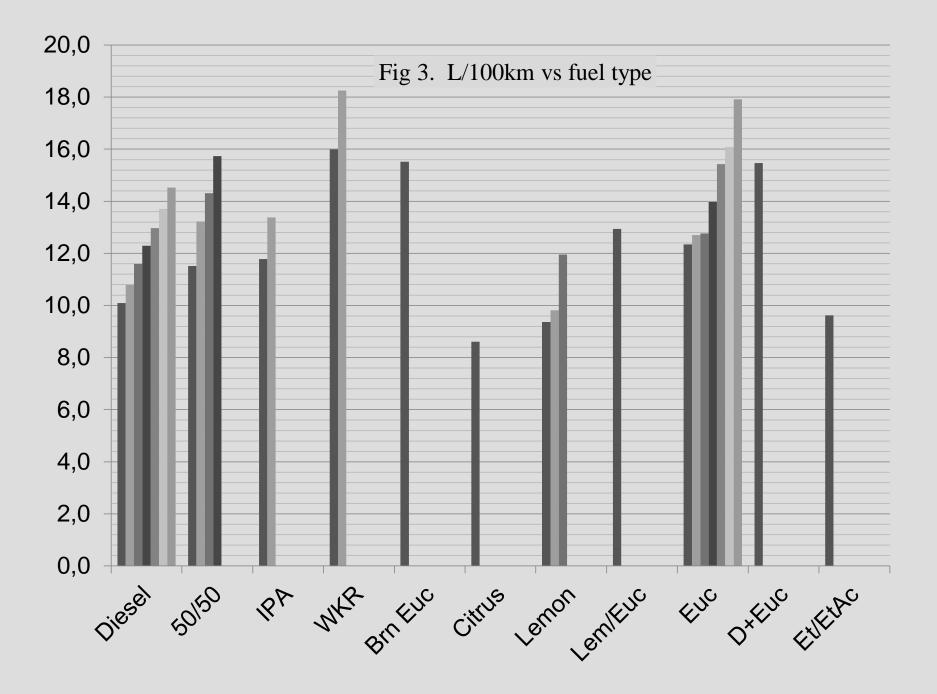
- Vehicle load
- Route travelled
- Traffic density light to rush-hour
- Weather wind direction & strength, temperature, humidity
- Fuel temperature (ambient)
- Vegetable oil source
- Oil blend present
- Sub-trial duration
- Diesel fuel source

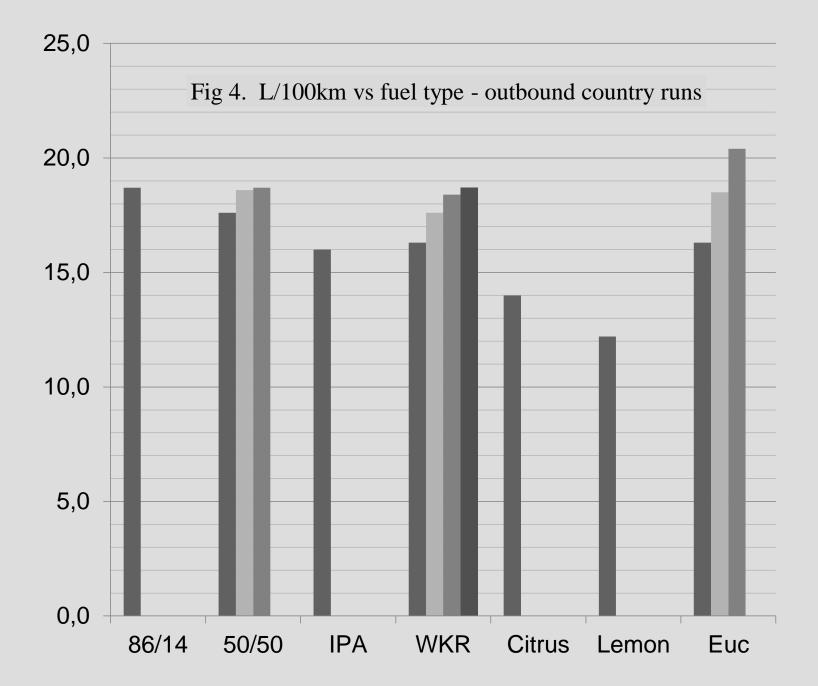

Uncontrolled variables were mitigated by :-

- Performing very many trials (total 42,000 km)
- Using two principal routes a 116km cross-Melbourne trip and a 375km country trip
- Separately logging results for the country route
- Travelling the routes equally in both directions
- City travel principally outside of rush-hour with relatively constant load
- Sourcing waste oil mostly from one place

Some unmeasured variables were qualitatively assessed and noted eg

- Vehicle load -
- Smoke emission -
- General vehicle performance -
- Country run wind direction -


laden, unladen good, bad normal, slow prevailing westerly



Fuel formulation details

Diesel	Conventional diesel fuel alone
50/50	50% waste vegetable oil and 50% conventional diesel
IPA	50/50 blend with isopropyl alcohol
WKR	50/50 blend with white king regular perfume*
Brn Euc	50/50 blend with brown eucalyptus perfume*
Citrus	50/50 blend with citrus perfume*
Lemon	50/50 blend with lemon perfume*
Lem/Euc	50/50 blend with lemon or eucalyptus perfume*
Euc	50/50 blend with eucalyptus perfume*
D+Euc	50/50 blend with eucalyptus perfume* or straight diesel
Et/EtAc	50/50 blend with ethanol and ethyl acetate

* Industrial perfume concentrates in ethanol

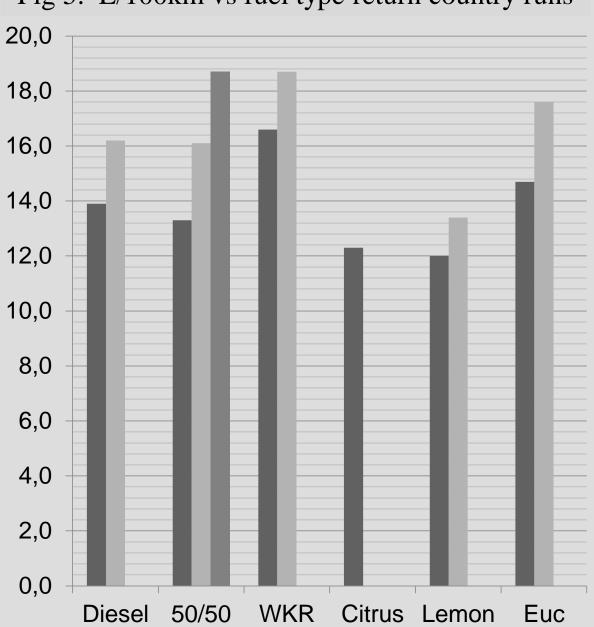


Fig 5. L/100km vs fuel type return country runs

Statistical analysis

- ** Diesel fuel surrogate (86% diesel, 14% WVO)
- † & * at 95% confidence level

Table 2 t-test outcomes		L/10	0km	No of s	Significant	
1 st variable	2 nd variable	1 st mean †	2 nd mean †	1 st	2 nd	?*
All trials						
Diesel	All other	12.3+/-1.5	13.4+/-1.1	7	23	No
Diesel	Citrus/Lemon	12.3+/-1.5	9.9+/-2.3	7	4	Yes
Diesel	Cit/Lem/LemEuc	12.3+/-1.5	10.5+/-2.3	7	5	No
Diesel	IPA/C/L/Et-EtAc	12.3+/-1.5	10.6+/-1.6	7	7	No
Diesel	W/L-Eu/Eu/D-Eu	12.3+/-1.5	14.9+/-1.4	7	11	Yes
Diesel	50/50	12.3+/-1.5	13.7+/-2.8	7	4	No
Diesel	Euc	12.3+/-1.5	14.5+/-1.9	7	7	Yes
Outbound countr	y runs					
86/14**	WKR	18.7	17.8+/-1.7	1	4	No
86/14**	All other	18.7	17.2+/-1.3	1	13	No
86/14**	All additives	18.7	16.8+/-1.7	1	10	No
Return country ru	uns					
Diesel	All other	15.0+/-14.5	15.3+/-1.8	2	10	No
Diesel	All additives	15.0+/-14.5	15.1+/-2.4	2	7	No
All country runs	•					
D+86/14	50/50	16.2+/-5.9	17.2+/-2.2	3	6	No
D+86/14	Lemon	16.2+/-5.9	12.6+/-1.9	3	3	No (Yes 90%)
D+86/14	WKR	16.2+/-5.9	17.7+/-1.1	3	6	No
D+86/14	Euc	16.2+/-5.9	17.5+/-2.7	3	5	No
D+86/14	All other	16.2+/-5.9	16.4+/-1.1	3	23	No
D+86/14	All additives	16.2+/-5.9	16.1+/-1.3	3	17	No
All outbound vs A	All return runs					
Outbound	Return	17.3+/-1.2	15.3+/-1.5	14	12	Yes
City runs						
Diesel	50/50	12.2+/-1.4	13.2+/-2.7	7	5	No
Diesel	Euc/B Euc/D+Eu	12.2+/-1.4	13.3+/-2.2	7	5	No
Diesel	All other	12.2+/-1.4	13.0+/-1.1	7	18	No
Diesel	All additives	12.2+/-1.4	12.9+/-1.4	7	13	No

Conclusions of the on-road trials

• For all 30 trials inclusive of both city and country driving, (a) there is no significant difference between mean fuel consumption using 100% diesel fuel and the 50/50 blend of WVO and diesel fuel (b) 50/50 blends containing eucalyptus perfume concentrate performed significantly worse than diesel fuel alone and (c) 50/50 blends containing citrus or lemon perfume concentrate performed significantly better than diesel fuel alone.

• Outbound country runs performed best using the 50/50 blend with lemon or citrus perfume and return runs performed best with the same perfume blends and the straight 50/50 blend. However, there is (a) no significant difference between fuel types used in outbound runs or in fuel types used in return runs, (b) a significant difference in the mean overall fuel consumption outbound vs the mean overall fuel consumption in return runs consequent upon different wind and load conditions (c) a significant difference at 90% confidence level for combined country runs between diesel fuel and the 50/50 blend containing lemon perfume concentrate.

• There is no significant difference between any of the fuel types for city runs.

• Fuel filter blockage was caused almost exclusively by suspended fats present in the waste vegetable oil used. These comprise higher melting point components of the vegetable oil blend used by the source fish-and-chip shop, hotel or restaurant, together with introduced fats from pre-cooked foodstuffs.

• Smoke emission is increased when the fuel filter is partially blocked, when the fuel injectors are worn and as the vehicle ages.

SOME VAPOUR CLOUD EXPLOSIONS CAUSED BY VOLATILE FUELS

The following lists 132 major accidents which occurred in the period 1921 to 2009. Of these, 26 are for gasoline or gasoline-like flammable liquid chemicals and 106 are for flammable gases. Of the flammable gases, seven involved hydrogen.

348 of the 1439 fatalities caused involved flammable liquids and 1091 involved flammable gases.

8 vapour cloud explosions involving automotive gasoline (petrol) courtesy, the author

009 C	Caribbean Petroleum	Bayamon	San Juan	Puerto Rico
009 In	ndian Oil Corporation Ltd	Sitapur	Jaipur	Rajasthan
005 H	Iertfordshire Oil Storage Ltd	Buncefield	Hertfordshire	UK
005 B	<i>BP Texas City</i>	Texas City	Texas	USA
983 Te	<i>Texaco</i>	Newark	New Jersey	USA
985		Naples		Italy
985 D	Dutch State Mines	Beek		Netherlands
991 E	Edouard Herriot port	Saint Herbla	ain	France
	09 IA 05 H 05 E 083 T 085 I 085 I	009Indian Oil Corporation Ltd005Hertfordshire Oil Storage Ltd005BP Texas City083Texaco085Dutch State Mines	109Indian Oil Corporation LtdSitapur105Hertfordshire Oil Storage LtdBuncefield105BP Texas CityTexas City1083TexacoNewark1085Dutch State MinesBeek	109Indian Oil Corporation LtdSitapurJaipur105Hertfordshire Oil Storage LtdBuncefield Hertfordshire105BP Texas CityTexas CityTexas1083TexacoNewarkNew Jersey1085Dutch State MinesBeek

20 vapour cloud explosions involving liquid and gaseous fuels as stated courtesy, Marsh

26th July	1996	LPG	Cactus	Reforma	Mexico
9th November	1992	Total Refinery, light HCs	La Mede		France
3rd November	1990	Refinery	Chalmette	Louisiana	USA
24th December	· 1989	ethane and propane	Baton Rouge	Louisiana	USA
23rd October	1989	ethylene and isobutane	Pasadena	Texas	USA
7th June	1989	propylene	Morris	Illinois	USA
5th May	1988	hydrocarbons	Norco	Louisiana	USA
14th November	· 1987	butane	Pampa	Texas	USA
15th August	1987	propane	Ras Tanura		Saudi Arabia
5th November	1985	propane	Mont Belvieu	Texas	USA
19th November	· 1984	LPG	Mexico City		Mexico
30th September	r 1984	propane	Basile	Louisiana	USA
21st October	1980	HCs and polymer	New Castle	Delaware	USA
20th January	1980	propane	Borger	Texas	USA
21 st July	1979	liquid and gaseous HCs	Texas City	Texas	USA
3 rd October	1978	propane	Denver	Colorado	USA
8th December	1977	ethylene	Brindisi		Italy
15th April	1977	gas pipeline	Abqaiq		Saudi Arabia
7th November	1975	HCs and propylene	Beek		Netherlands
29th November	· 1974	liquid and gaseous HCs	Beaumont	Texas	USA

99 vapour cloud explosions involving liquid and gaseous fuels (as listed) courtesy, Gugan

20 th February	1977	isobutane	Dallas	Texas	USA
21 st September	1976	propylene	New Jersey		USA
-	1976	pentanes	Puerto Rico		USA
<i>February</i>	1976	LPG	Texas		USA
	1976	ethylene	Texas		USA
	1975	light hydrocarbons			Czechoslovakia
L.	1975	hydrogen		California	USA
	1975	naphtha and hydrogen			W Germany
10 th February	1975	Union Carbide, ethylene	Antwerp		Belgium
18 th July	1974	Dow Chemical, propylene	Plaquemine	Louisiana	USA
	1974	pentanes		Texas	USA
12st September	1974	butadiene	Houston	Texas	USA
13 th September	1974	propane	Griffith	Indiana	USA
	1974	ethylene			UK
5 th September	1974	Solvay, dichlorethylene/VC	Barcelona		Spain
25 th August	1974	butane	Petal	Missouri	USA
19 th July	1974	rail tank car, propane	Decatur	Illinois	USA
29 th June	1974	vinyl choride	Climax	Texas	USA
1 st June	1974	Nypro Ltd, cyclohexane	Flixborough	Lincolnshire	UK
January	1974	road tanker, propane		Florida	USA
23 rd February	1973	pipeline, LNG	Austin	Texas	USA
28 th October	1973	vinyl chloride	Shinetsu		Japan
	1973	ethylene			Japan
19 th March	1972	propane	Lynchburg	Virginia	USA
	1972	butane		Montana	USA
September	1972	LNG			France
14 th May	1972	Exxon, crude oil	Hearne	Texas	USA
	1972	butane			Brazil
22 nd January	1972	rail tank cars, propylene	East St Louis	Illinois	USA
1	1971	butadiene		Texas	USA
	1971	ethylene		Texas	USA

O Cal		1071	.1 1	. .	T	110.4
26 th	February	1971	ethylene	Longview	Texas	USA
19 th	January	1971	road tanker, ethylene	_	Louisiana	USA
9 th	December		Franklin Co, propane	Port Hudson	Мо	USA
12 th	November			Hudson	Ohio	USA
23 rd	October	1970	· 1 1	Hull	N Humberside	
2^{nd}	June	1970	rail tank cars, propane	Crescent City	Illinois	USA
		1970	heavy HCs and hydrogen		New Jersey	USA
14^{th}	May	1969	ICI, cyclohexane	Wilton		UK
11 th	September	1969	vinyl chloride	Black Bayou	Mississippi	USA
28 th	December	1969	Esso, naphtha and hydrogen	Fawley	Hampshire	UK
5 th	December	1968	pipeline, LPG	Yutan	Nebraska	USA
		1968	vinyl chloride		Louisiana	USA
		1968	light HCs and acid		Texas	USA
20^{th}	January	1968	Shell, light HCs	Pernis		Holland
8^{th}	August	1967	Cities Serv Oil, isobutylene	Lake Charles	Louisiana	USA
23 rd	May	1966	Gulf,cumene/benzene/propan	e	Pennsylvania	USA
		1966	light HCs			W Germany
		1966	butadiene		Louisiana	USA
	January	1966	pipeline, ethylene			W Germany
16 th	January	1966	Caltex, methane	Raunheim		W Germany
4^{th}	January	1966	propane	Feyzin		France
	·		butane	·	Texas	USA
24^{th}	October	1965	Escambia Chem Corp, hydrog	gen, carbon mo	noxide	
		1965		Baton Rouge		USA
13 th	July	1965	Cities Serv, methane/ethylene	Lake Charles	Louisiana	USA
	-	1964	ethylene		Texas	USA
9 th	January	1964	NRDS, hydrogen	Jackass Flats	Nevada	USA
	9		Dow, methane/ethylene	Plaquemine	Louisiana	USA
4^{th}	August		propane	1		Middle East
25^{th}	July	1962	· ·	Berlin	New York	USA
17^{th}	April	1962	ethylene oxide	Doe Run	Kentucky	USA
	r	1961	cyclohexane		Texas	USA
28^{th}	June	1959	rail tank car, LPG	Meldrin	Georgia	USA
-			,			

30 th	July	1958	LPG	Augusta	Georgia	USA
3rd	July	1958	-	Boron	0	USA
15 th	April		-		5	USA
		1958	oil froth	California		USA
		1958	butane	•	Michigan	USA
24^{th}	October	1957	road tanker, LPG	Sacramento	0	USA
		1957	butane		v	Canada
8 th	January	1957	butane	Montreal E	~	Canada
	v	1956	ethylene		New York	USA
22^{nd}	July	1955	butane	Wilmington	North Carolina	aUSA
	·	1954	rail tank car, acrolein	0	W Virginia	USA
18 th	October	1954		Portland	•	USA
	January	1954	isopropyl alcohol		Tennessee	USA
21^{st}	July	1952		Bakersfield	California	USA
24^{th}	June	1952	LPG	Kansas City	Kansas	USA
2^{nd}	January	1952	rail tank car, propane			
6 th	March	1951	Koppers Co, butadiene	Kobuta	Pennsylvania	USA
7 th	October	1950	LPG	Woodbury	Georgia	USA
23 rd	August	1950	road tanker, propane	Wray	Colorado	USA
27 th	October	1949	rail tank car, LPG	Winthrop	Missouri	USA
23^{rd}	June	1949	California Ref, hydrocarbons	Perth	New Jersey	USA
28^{th}	July	1948	BASF, dimethyl ether	Ludwigshafen		W Germany
13 th	October	1948	road tanker, butane	Sacramento	California	USA
		1945	crude oil		New Jersey	USA
25^{th}	April	1945	butane	Los Angeles	California	USA
21 st	November	1944	butane	Dennison	Texas	USA
15 th	November	1944	methane	Cleveland	Ohio	USA
10 th	August	1943	Home Gas Corp, propane	Palmer	Massachusetts	USA

18 th	January	1943	road tanker, butane	Los Angeles	California	USA
11 th	June	1941	road tanker, butane	Los Angeles	California	USA
2^{nd}	January	1939	butane	Newark	New Jersey	USA
22^{nd}	October	1936	butane	Crowley	Louisiana	USA
2^{nd}	June	1934	butane	Huntington B	California	USA
17 th	December	1932	LPG	Detroit	Michigan	USA
23^{rd}	August	1921	Dirigible ZR-2, hydrogen	Hull	N Humbersid	e UK

5 major incidents not reported above courtesy of the author

25^{th}	September	1998	Esso/BHP, methane, propane	Longford	Victoria	Australia
21^{st}	August	1991	Terminals P/L, acrylonitrile	Coode Island	Victoria	Australia
6 th	July	1988	Piper Alpha oil rig, propane	nr Aberdeen	Aberdeenshire	e UK
25 th	February	1982	Goodrich, vinyl chloride	Altona	Victoria	Australia
11^{th}	July	1978	Road tanker, propylene	San Carlos	Barcelona	Spain

ASSESSMENT OF THE VIABILITY OF VEGETABLE OIL BASED FUELS

SOME COMMON OIL PRODUCING SPECIES

123 principally non food-crop oil-producing species in the following 52 families

Amaranthaceae Anarcadiaceae Apocynaceae Arecaceae Asclepiadoideae Asteraceae Betulaceae Bombacaceae Brassicaceae Burseraceae Calophyllaceae Cannabaceae Caesalpinioideae Capparaceae Caryocaraceae Cornaceae Crysobalanaceae Clusiaceae Combretaceae Cucurbitaceae

Dipterocarpaceae Euphorbiaceae Fabaceae Facaceae Guttiferae Irvingiaceae Lamiaceae Linaceae Leguminosae Magnoliaceae Magnoliopsida Malvaceae Meliaceae Moraceae Moringaceae Myrtaceae Ochnaceae Olacaceae Oleaceae Papaveraceae

Pinaceae (Turpentine oil source species) Pistacia Poaceae Pittosporaceae Putranjivaceae Rosaceae Rutaceae Salicaceae Salvadoraceae Sapindaceae Sapotaceae Simmondsiaceae Solanaceae Sterculiaceae Zygophyllacea

13 common examples are shown overleaf

ASSESSMENT OF THE VIABILITY OF VEGETABLE OIL BASED FUELS

Some common non-food oil producing species are :-

- Panicum virgatum; Switchgrass; Australia
- Ximenia americana; Yellow Plum or Sea Lemon; Australia
- Pongamia pinnata; Karanja oil, Honge oil; Australia
- Calophyllum elatum; Teitai tree
- Sesbania bispinosa; prickly sesban tree
- Jatropha gossypifolia; Bellyache bush; Australia
- Jatropha curcas; Purging Nut tree
- Ricinus commulis; Castor Oil tree; weed in Australia
- Brassica juncea; Mustard greens
- Camelina sativa; Wild Flax
- Cynara cardunculus; artichoke thistle; weed in Australia
- Livistona mariae; Central Australian Cabbage Palm
- Salicornia bigelovii; sea asparagus; salt-tolerant

Panicum virgatum; Switchgrass; Australia

Ximenia americana; Yellow Plum or Sea Lemon; Australia

Pongamia pinnata; Karanja oil, Honge oil; Australia

Calophyllum elatum; Teitai tree

Sesbania bispinosa; prickly sesban

Jatropha gossypifolia; Bellyache bush; Australia

Jatropha curcas; Purging Nut tree; tropical

JatrophaCurcasPlantations.com

Ricinus commulis; Castor Oil tree; weed in Australia

(weed in Australia; exotic plant in Europe)

Brassica juncea; Mustard greens

「5本HRAAM 京施盛武殿田

Cynara cardunculus; artichoke thistle; Australia

IOTOLIBRARY

www.rarepalmseeds.com

3

N

Livistona mariae; Central Australian Cabbage Palm

Salicornia bigelovii; sea asparagus; salt-tolerant

©2006 Jeffrey Pippen

CHENOPODIACEAE Salicornia bigelovii (Dwarf Saltwort) Vernonia anthelmintica

Vernolic acid contains 3 oxygen atoms per molecule

The triglyceride contains up to 9 oxygen atoms per molecule

The presence of chemically combined oxygen improves combustion

ASSESSMENT OF THE VIABILITY OF VEGETABLE OIL BASED FUELS

SOME SLIDES SHOWING :-

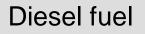
VISCOSITY DIFFERENCES

BLOCKED FILTER CONTENTS

INJECTOR COMPONENTS

THE EFFECT OF INJECTION PRESSURE ON SPRAY PATTERN

Preparing a fuel blend


Waste vegetable oil

Laminar flow and very slow

Viscosity eg peanut oil = 42 cP @ 38°C

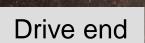
28/10/2009

Preparing a fuel blend

Turbulent and fast

Viscosity eg Diesel fuel $3D = 12 \text{ cP} @ 38^{\circ}C$

Typical filter sludge

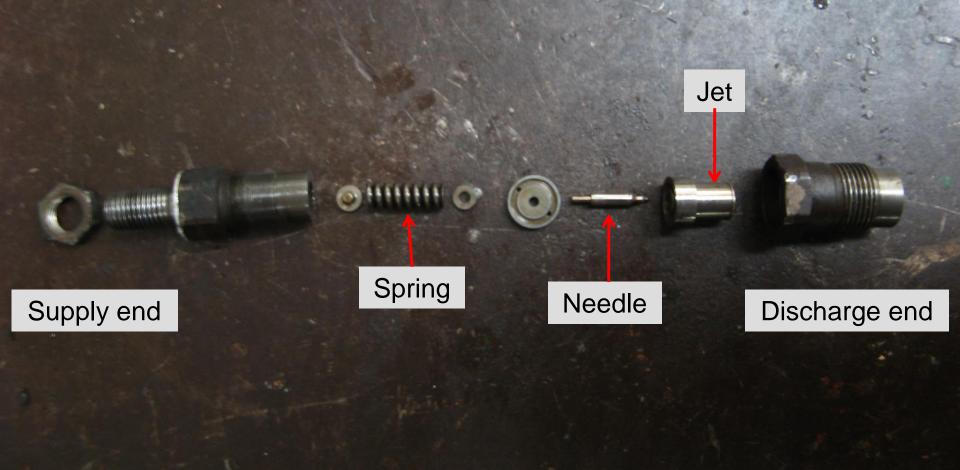


Sludge is mostly solid oils and fats

The Zexel 500 MPa fuel injector pump removed to assess blockage

Throttle connection

HI MAN


Injectors

Discharge end

08/04/200

Disassembled fuel injector being assessed for cause of exhaust smoke

new needles, springs and jets were fitted

Fuel injector test apparatus, diesel fuel at 150 bar

Fuel injector test apparatus, vegetable oil at 350 bar

20/09/2012